ImaGIN_BadChannel.m
6.36 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
function D = ImaGIN_BadChannel(S)
% Detect bad channels indices with a trained classifier.
%
% -=============================================================================
% This function is part of the ImaGIN software:
% https://f-tract.eu/
%
% This software is distributed under the terms of the GNU General Public License
% as published by the Free Software Foundation. Further details on the GPLv3
% license can be found at http://www.gnu.org/copyleft/gpl.html.
%
% FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE AUTHORS
% DO NOT ASSUME ANY LIABILITY OR RESPONSIBILITY FOR ITS USE IN ANY CONTEXT.
%
% Copyright (c) 2000-2018 Inserm U1216
% =============================================================================-
%
% Authors: Viateur Tuyisenge & Olivier David
% Name of input iEEG file .dat/.mat (cropped)
if (nargin >= 1) && isfield(S, 'dataset') && ~isempty(S.dataset)
FileIn = S.dataset;
else
FileIn = spm_select(1, '\.mat$', 'Select EEG mat file');
if isempty(FileIn)
return;
end
end
% Directory where iEEG file .dat/.mat with badchannels indices will be stored
if (nargin >= 1) && isfield(S, 'FileOut') && ~isempty(S.FileOut)
[badDir, FileOut] = fileparts(S.FileOut);
isNewFile = 1;
else
[badDir, FileOut] = fileparts(FileIn);
isNewFile = 0;
end
% Directory where training set is stored (if not defined, use the toolbox folder)
if (nargin >= 1) && isfield(S, 'trainBase') && ~isempty(S.trainBase)
trainDir = S.trainBase;
else
trainDir = fileparts(mfilename('fullpath'));
end
% Detect bad channels and save summary images
try
% Load the cropped meeg object
D = spm_eeg_load(FileIn);
% Compute signal features (apply artifact correction only for stims)
clear S2;
S2.FileName = FileIn;
if ~isempty(D.events) && ~isempty(D.events.type) && ismember('Stim', {D.events.type})
S2.InterpolationFilter = 1;
else
S2.InterpolationFilter = 0;
end
T = ImaGIN_FeatureSEEG(S2);
% If the trained classifier is not available: compute it
trainedFile = fullfile(trainDir, 'ImaGIN_trainedClassifier.mat');
if ~exist(trainedFile, 'file')
% Get train base file
trainBaseFile = fullfile(trainDir, 'ImaGIN_trainBaseFeatures.mat');
if ~exist(trainBaseFile, 'file')
error(['File ' trainBaseFile ' was not found.']);
end
% Load the train base
trainBase = load(trainBaseFile);
% Train the classifier
trainedClassifier = ImaGIN_trainClassifier(trainBase.predictors, trainBase.response);
% Otherwise, load the trained classifier
else
trainedClassifier = load(trainedFile);
end
% Predict new dataset
channelClass = trainedClassifier.predictFcn(T(:,2:8));
% Get list of detected bad channels
bIdx = find(strcmp(channelClass, 'Bad'));
% Save bad channel indices in .txt file
badFile = fopen(fullfile(badDir, [FileOut, '_bIdx.txt']), 'w');
fprintf(badFile, '%d\n', bIdx(:));
fclose(badFile);
% Add badchannel index in meeg object
if ~isempty(bIdx)
D = badchannels(D,bIdx,1);
end
% Create new file in output (otherwise, simply update the input file)
if isNewFile
Dbad = clone(D, fullfile(badDir, FileOut), [D.nchannels D.nsamples D.ntrials]); % save meeg with badchannel indices in Badchannel directory
Dbad(:,:,:) = D(:,:,:);
end
% Save modified list of bad channels
save(Dbad);
% Channel plots and ScreenShots
figDir = fullfile(badDir, 'ScreenShot');
if ~exist(figDir, 'dir')
mkdir(figDir);
end
close all;
Size = 8; % Number of channels per screenshot
n_c = size(D,1);
if n_c >= Size
tmp = floor(n_c/Size);
for i2 = 1:tmp
figure(i2);
set(gcf,'Position',[629 -17 702 1101])
for i3 = 1:Size
if intersect(i3+(i2-1)*Size,bIdx) == i3+(i2-1)*Size
color = 'r'; %Bad channels will be printed in red
else
color = 'k'; %Good channels will be printed in black
end
subplot(Size,1,i3)
plot(time(D),D(i3+(i2-1)*Size,:),color);
ylabel([num2str(i3+(i2-1)*Size) ' : ' D.chanlabels{i3+(i2-1)*Size}])
if i3 == 1
figName = char(strcat(FileOut,'_',num2str(i3+(i2-1)*Size),'-', ...
num2str(i2*Size)));
title(figName,'interpreter','none');
end
axis tight
end
zoom on
fig = figure(i2);
print(fig,fullfile(figDir,figName),'-dpng'); %ScreenShot
close;
end
rmd = size(D,1) - tmp*Size;
if rmd ~= 0
figure(tmp + 1)
set(gcf,'Position',[629 -17 702 1101])
for i4 = 1:rmd
if intersect(i3+(i2-1)*Size+i4,bIdx)== i3+(i2-1)*Size+i4
color = 'r';
else
color = 'k';
end
subplot(rmd,1,i4)
plot(time(D),D(i3+(i2-1)*Size+i4,:),color);
ylabel([num2str(i3+(i2-1)*Size+i4) ' : ' D.chanlabels{i3+(i2-1)*Size+i4}])
if i4 == 1
figName = char(strcat(FileOut,'_',num2str(i3+(i2-1)*Size + 1),'-',num2str(n_c)));
title(figName,'interpreter','none');
end
axis tight
end
zoom on
fig = figure(i2+1);
print(fig, fullfile(figDir,figName), '-dpng');
close
end
else
figure(1)
set(gcf,'Position',[629 -17 702 1101])
for i5 = 1:n_c
if intersect(i5,bIdx)== i5
color = 'r';
else
color = 'k';
end
subplot(n_c,1,i5)
plot(time(D),D(i5,:),color);
ylabel([num2str(i5) ' : ' D.chanlabels{i5}])
if i5 == 1
figName = char(strcat(FileOut,'_',num2str(1),'-',num2str(n_c)));
title(figName,'interpreter','none');
end
axis tight
end
zoom on
fig = figure(1);
print(fig, fullfile(figDir,figName), '-dpng');
close
end
set_final_status('OK')
catch ME
fprintf('%s \n', ME.message)
set_final_status('NOK')
end