ImaGIN_Epileptogenicity.m
29.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
function ImaGIN_Epileptogenicity(S)
% Compute epileptogenicity using time-windowed fft
%
% USAGE: D = ImaGIN_Epileptogenicity(S)
% -=============================================================================
% This function is part of the ImaGIN software:
% https://f-tract.eu/
%
% This software is distributed under the terms of the GNU General Public License
% as published by the Free Software Foundation. Further details on the GPLv3
% license can be found at http://www.gnu.org/copyleft/gpl.html.
%
% FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE AUTHORS
% DO NOT ASSUME ANY LIABILITY OR RESPONSIBILITY FOR ITS USE IN ANY CONTEXT.
%
% Copyright (c) 2000-2018 Inserm U1216
% =============================================================================-
%
% Authors: Olivier David
% Francois Tadel, 2017
%% ===== INPUTS =====
warning off
NameEpileptogenicity='EI';
spm('defaults', 'EEG');
try
DD = S.D;
catch
DD = spm_select(inf, '\.mat$', 'Select EEG mat file');
end
try
BB = S.B;
catch
BB = spm_select(inf, '\.mat$', 'Select Baseline EEG mat file');
end
try
latency = S.Latency;
catch
latency = spm_input('Peri-onset time [s]', 1, 'r', 0:4:20, inf);
end
latency=transpose(latency(:));
try
FreqBand = S.FreqBand;
catch
FreqBand = spm_input('Frequency Band [Hz]', '+1', 'r', [60 100], 2);
end
try
OutputType = S.OutputType;
catch
OutputType = spm_input('Type of output', '+1', 'Surface|Volume');
end
switch lower(OutputType)
case 'volume'
try
Atlas = S.Atlas;
catch
str = 'Select atlas';
Atlas = spm_input(str, '+1','Human|Rat|Mouse|PPN');
end
try
CorticalMesh = S.CorticalMesh;
catch
str = 'Use cortical mesh ';
str=spm_input(str, '+1','Yes|No');
if strcmp(str,'Yes')
CorticalMesh = 1;
else
CorticalMesh = 0;
end
end
if CorticalMesh
try
sMRI = S.sMRI;
catch
sMRI = spm_select(Inf, 'image', 'Select MRI');
end
% Surface: If not in input, will compute it (SPM canonical)
try
MeshFile = S.MeshFile;
catch
MeshFile = [];
end
else
MeshFile = [];
end
% Output extension
outExt = '.nii';
strSelectVol = ',1';
SmoothIterations = [];
case 'surface'
try
MeshFile = S.MeshFile;
catch
MeshFile = spm_select(1, '\.gii$', 'Select cortex surface');
end
try
SmoothIterations = S.SmoothIterations;
catch
SmoothIterations = spm_input('Smoothing parameter', '+1', 'r', 5);
end
% Output extension
outExt = '.gii';
strSelectVol = '';
end
try
Horizon = S.HorizonT;
catch
Horizon = spm_input('Mesoscopic time scale [s]', '+1', 'r', 4, 1);
end
try
TimeResolution = S.TimeResolution;
catch
TimeResolution = spm_input('Time resolution [s]', '+1', 'r', 0.2, 1);
end
try
ThDelay = S.ThDelay;
catch
ThDelay = spm_input('Propagation threshold (p or T)', '+1', 'r', 0.05, 1);
end
try
AR = S.AR;
catch
tmp = spm_input('AR correction', '+1', 'Yes|No');
if strcmp(tmp,'Yes')
AR = 1;
else
AR = 0;
end
end
try
FileName=S.FileName;
catch
FileName = spm_input('File name', '+1', 's');
end
% Volume resolution
VolRes = 3;
SaveMNI = 0;
% Find common Channels and define as bad the missing ones over files
N = zeros(1,size(DD,1));
Labels = cell(1,size(DD,1));
BadChannel = cell(1,size(DD,1));
for i0 = 1:size(DD,1)
D = spm_eeg_load(deblank(DD(i0,:)));
Labels{i0} = chanlabels(D);
N(i0) = length(Labels{i0});
BadChannel{i0} = badchannels(D);
end
L = zeros(size(DD,1),max(N));
for i0=1:size(DD,1)
tmp=setdiff(1:size(DD,1),i0);
for i1=1:length(Labels{i0})
for i2=tmp
for i3=1:length(Labels{i2})
if strcmp(Labels{i0}(i1),Labels{i2}(i3))
L(i0,i1)=L(i0,i1)+1;
end
end
end
end
end
M = max(L(:));
for i0=1:size(DD,1)
BadChannel{i0} = unique([BadChannel{i0} find(L(i0,:)<M)]);
BadChannel{i0} = BadChannel{i0}(find(BadChannel{i0}<=N(i0)));
end
% Load cortex mesh
if ~isempty(MeshFile)
giiCortex = gifti(MeshFile);
else
giiCortex = [];
end
%% ===== EPILEPTOGENICITY MAPS =====
for i00 = 1:size(latency, 2)
Latency = mean(latency(:,i00));
% ===== PROCESS EACH FILE SEPARATELY =====
for i0 = 1:size(DD,1)
if (length(Horizon) == 1)
TimeWindow = 0 : TimeResolution : Horizon+1+max(latency(:));
elseif (length(Horizon) > 1)
TimeWindow = 0 : TimeResolution : Horizon(i0)+1+max(latency(:));
end
% Load seizure
D = spm_eeg_load(deblank(DD(i0,:)));
P = spm_str_manip(deblank(DD(i0,:)),'h');
cd(P)
% Load baseline
B = spm_eeg_load(deblank(BB(i0,:)));
timebaseline = time(B);
TimeWindowBaseline = timebaseline(1) : (TimeWindow(2)-TimeWindow(1)) : (timebaseline(end)-1);
% Compute power using multitaper
try
DPower = spm_eeg_load(fullfile(D.path,['m1_' SS.Pre '_' D.fname]));
DPowerBaseline = spm_eeg_load(fullfile(B.path,['m1_' SS.Pre '_' B.fname]));
catch
% Compute seizure power
clear SS
SS.D = deblank(DD(i0,:));
SS.Pre = ['Epi_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' FileName];
SS.Method = 'Multitaper';
SS.TimeResolution = TimeResolution;
SS.frequencies = min(FreqBand):max(FreqBand);
SS.TimeWindow = [min(TimeWindow), max(TimeWindow)];
SS.TimeWindowWidth = 1;
SS.channels = 1:D.nchannels;
SS.FactMod = 10;
SS.NSegments = 1;
SS.Taper = 'hanning';
ImaGIN_spm_eeg_tf(SS);
% Load seizure output
DPower = spm_eeg_load(fullfile(D.path,['m1_' SS.Pre '_' D.fname]));
% Compute baseline power
SSB = SS;
SSB.D = deblank(BB(i0,:));
SSB.TimeWindow = TimeWindowBaseline;
ImaGIN_spm_eeg_tf(SSB);
% Load baseline output
DPowerBaseline = spm_eeg_load(fullfile(B.path,['m1_' SSB.Pre '_' B.fname]));
% SS2.D = fullfile(D.path,['m1_' SS.Pre '_' D.fname]);
% SS2.B = fullfile(B.path,['m1_' SSB.Pre '_' B.fname]);
% ImaGIN_NormaliseTF(SS2);
end
% Find frequency band
IndexFreq1 = min(find(DPower.frequencies>=min(FreqBand))):max(find(DPower.frequencies<=max(FreqBand)));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% OD-Nov 2017: Attempt to select only the frequencies with the highest power.
% Issues: - Different latencies are processed with different frequency bands
% - Frequency selection is different from what is explored in the time-frequency maps
%
% % Compute power within frequencies of interest
% [Epitmp,order] = sort(mean(DPower(:,IndexFreq1,:),3),2);
% Epileptogenicity = squeeze(mean(DPower(:,IndexFreq1,:),2));
% for i1 = 1:size(Epileptogenicity,1)
% Epileptogenicity(i1,:) = squeeze(mean(DPower(i1,order(i1,floor(0.75*size(order,2)):end),:),2));
% end
% EpileptogenicityBaseline = squeeze(mean(DPowerBaseline(:,IndexFreq1,:),2));
% for i1 = 1:size(EpileptogenicityBaseline,1)
% EpileptogenicityBaseline(i1,:) = squeeze(mean(DPowerBaseline(i1,order(i1,floor(0.75*size(order,2)):end),:),2));
% end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ORIGINAL BLOCK
% Get power for seizure and baselines
Power = DPower(:,IndexFreq1,:);
PowerBaseline = DPowerBaseline(:,IndexFreq1,:);
% Compute average power within frequencies of interest
Epileptogenicity = squeeze(mean(Power,2));
EpileptogenicityBaseline = squeeze(mean(PowerBaseline,2));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Replace bad channels with NaN
if ~isempty(BadChannel{i0})
Epileptogenicity(BadChannel{i0},:) = NaN;
EpileptogenicityBaseline(BadChannel{i0},:) = NaN;
end
Epileptogenicity = log(Epileptogenicity);
EpileptogenicityBaseline = log(EpileptogenicityBaseline);
% Add offset to have only positive values as for fMRI (otherwise problem with globals calculation)
tmp = min([Epileptogenicity(:);EpileptogenicityBaseline(:)]);
Epileptogenicity = Epileptogenicity-tmp;
EpileptogenicityBaseline = EpileptogenicityBaseline-tmp;
% Save Log Power: Seizure
D1 = clone(D, [FileName spm_str_manip(D.fname,'s') '_' NameEpileptogenicity '_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon))) '_' num2str(round(mean(Latency))) '.mat'],[D.nchannels size(Epileptogenicity,2) 1]);
D1(:,:,:) = Epileptogenicity;
D1 = fsample(D1,1/(DPower.tf.time(2)-DPower.tf.time(1)));
D1 = timeonset(D1,min(DPower.tf.time));
save(D1);
% Save Log Power: Baseline
D1 = clone(B, [FileName spm_str_manip(D.fname,'s') '_' NameEpileptogenicity 'Baseline_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon))) '_' num2str(round(mean(Latency))) '.mat'],[B.nchannels size(EpileptogenicityBaseline,2) 1]);
D1(:,:,:) = EpileptogenicityBaseline;
D1 = fsample(D1,1/(DPowerBaseline.tf.time(2)-DPowerBaseline.tf.time(1)));
D1 = timeonset(D1,min(DPowerBaseline.tf.time));
save(D1);
% Write 3D images of log power for statistics
clear SS
try
SS.TimeWindow = latency(i0,i00) + (0:TimeResolution:Horizon);
catch
SS.TimeWindow = Latency + (0:TimeResolution:Horizon);
end
SS.MeshFile = MeshFile;
SS.TimeWindowWidth = 0;
SS.SizeHorizon = 10;
dirSeizure = fullfile(P,[FileName spm_str_manip(D.fname,'s') '_' NameEpileptogenicity '_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon))) '_' num2str(round(mean(Latency)))]);
dirBaseline = fullfile(P,[FileName spm_str_manip(D.fname,'s') '_' NameEpileptogenicity 'Baseline_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon))) '_' num2str(round(mean(Latency)))]);
% Save volume (.nii) or surface (.gii)
switch lower(OutputType)
case 'volume'
% Define volume options
SS.n = VolRes;
SS.interpolate_bad = 0;
SS.SizeSphere = 5;
SS.CorticalMesh = CorticalMesh;
if CorticalMesh
SS.sMRI = sMRI;
end
SS.Atlas = Atlas;
SS.SaveMNI = 0;
% Save seizure files
if isdir(dirSeizure)
cd(P)
rmdir(dirSeizure,'s')
end
SS.Fname = dirSeizure;
ImaGIN_spm_eeg_convertmat2ana_3D(SS);
% Save baseline files
SS.TimeWindow = min(DPowerBaseline.tf.time):TimeResolution:max(DPowerBaseline.tf.time);
if isdir(dirBaseline)
cd(P)
rmdir(dirBaseline,'s')
end
SS.Fname = dirBaseline;
ImaGIN_spm_eeg_convertmat2ana_3D(SS);
% Smooth images to get Gaussian fields
[files,dirs] = spm_select('List', dirSeizure, outExt);
for i1=1:size(files,1)
tmp=deblank(files(i1,:));
Q = fullfile(dirSeizure, tmp);
clear matlabbatch
matlabbatch{1}.spm.spatial.smooth.data = {[Q ',1']};
matlabbatch{1}.spm.spatial.smooth.fwhm = [5 5 5];
matlabbatch{1}.spm.spatial.smooth.dtype = 0;
matlabbatch{1}.spm.spatial.smooth.im = 1;
matlabbatch{1}.spm.spatial.smooth.prefix = 's';
% spm('defaults', 'EEG');
spm_jobman('run', matlabbatch);
movefile(fullfile(dirSeizure, ['s' tmp]), fullfile(dirSeizure,tmp));
end
[files,dirs] = spm_select('List', dirBaseline, outExt);
for i1=1:size(files,1)
tmp=deblank(files(i1,:));
Q = fullfile(dirBaseline, tmp);
clear matlabbatch
matlabbatch{1}.spm.spatial.smooth.data = {[Q ',1']};
matlabbatch{1}.spm.spatial.smooth.fwhm = [5 5 5];
matlabbatch{1}.spm.spatial.smooth.dtype = 0;
matlabbatch{1}.spm.spatial.smooth.im = 1;
matlabbatch{1}.spm.spatial.smooth.prefix = 's';
% spm('defaults', 'EEG');
spm_jobman('run', matlabbatch);
movefile(fullfile(dirBaseline, ['s' tmp]), fullfile(dirBaseline,tmp));
end
case 'surface'
% Copy surface options
SS.SmoothIterations = SmoothIterations;
% Save seizure files
if isdir(dirSeizure)
cd(P)
rmdir(dirSeizure,'s')
end
SS.Fname = dirSeizure;
ImaGIN_spm_eeg_convertmat2ana_mesh(SS);
% Save baseline files
SS.TimeWindow = min(DPowerBaseline.tf.time):TimeResolution:max(DPowerBaseline.tf.time);
if isdir(dirBaseline)
cd(P)
rmdir(dirBaseline,'s')
end
SS.Fname = dirBaseline;
ImaGIN_spm_eeg_convertmat2ana_mesh(SS);
% SMOOTHING
% Smoothing of results on the surface is handled in ImaGIN_spm_eeg_convertmat2ana_mesh
end
% SPMs
spmDir = fullfile(P,['SPM_' NameEpileptogenicity '_' FileName spm_str_manip(D.fname,'s') '_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon))) '_' num2str(round(mean(Latency)))]);
if isdir(spmDir)
cd(P)
rmdir(spmDir,'s')
end
mkdir(spmDir);
clear matlabbatch
matlabbatch{1}.spm.stats.fmri_spec.dir = {spmDir};
matlabbatch{1}.spm.stats.fmri_spec.timing.units = 'scans';
matlabbatch{1}.spm.stats.fmri_spec.timing.RT = TimeResolution;
matlabbatch{1}.spm.stats.fmri_spec.timing.fmri_t = 16;
matlabbatch{1}.spm.stats.fmri_spec.timing.fmri_t0 = 1;
[files,dirs] = spm_select('List', dirSeizure, outExt);
ntmp = size(files,1);
for i1 = 1:size(files,1)
matlabbatch{1}.spm.stats.fmri_spec.sess.scans{i1,1} = fullfile(dirSeizure, [files(i1,:) strSelectVol]);
end
[files,dirs] = spm_select('List', dirBaseline, outExt);
for i1 = 1:size(files,1)
matlabbatch{1}.spm.stats.fmri_spec.sess.scans{ntmp+i1,1} = fullfile(dirBaseline, [files(i1,:) strSelectVol]);
end
matlabbatch{1}.spm.stats.fmri_spec.sess.cond = struct('name',{},'onset',{},'duration',{},'tmod',{},'pmod',{});
matlabbatch{1}.spm.stats.fmri_spec.sess.multi{1} = '';
matlabbatch{1}.spm.stats.fmri_spec.sess.regress.name = 'Seizure';
matlabbatch{1}.spm.stats.fmri_spec.sess.regress.val = [ones(ntmp,1);zeros(size(files,1),1)];
matlabbatch{1}.spm.stats.fmri_spec.sess.multireg{1} = '';
matlabbatch{1}.spm.stats.fmri_spec.sess.hpf = Inf;
matlabbatch{1}.spm.stats.fmri_spec.bases.hrf.derivs = [0 0];
matlabbatch{1}.spm.stats.fmri_spec.volt = 1;
matlabbatch{1}.spm.stats.fmri_spec.global = 'None';
matlabbatch{1}.spm.stats.fmri_spec.mask = {''};
if AR
matlabbatch{1}.spm.stats.fmri_spec.cvi = 'AR(1)';
else
matlabbatch{1}.spm.stats.fmri_spec.cvi = 'none';
end
matlabbatch{2}.spm.stats.fmri_est.spmmat = {fullfile(matlabbatch{1}.spm.stats.fmri_spec.dir{1}, 'SPM.mat')};
matlabbatch{2}.spm.stats.fmri_est.method.Classical = 1;
matlabbatch{3}.spm.stats.con.spmmat = {fullfile(matlabbatch{1}.spm.stats.fmri_spec.dir{1}, 'SPM.mat')};
matlabbatch{3}.spm.stats.con.consess{1}.tcon.name = '+';
matlabbatch{3}.spm.stats.con.consess{1}.tcon.convec = 1;
matlabbatch{3}.spm.stats.con.consess{1}.tcon.sessrep = 'none';
matlabbatch{3}.spm.stats.con.delete = 0;
spm_get_defaults('mask.thresh', 0) %no implicit masking of SPM-Ts
spm_jobman('run',matlabbatch)
% Write T-values for each electrode
WriteTvalues(deblank(DD(i0,:)), ... % Reference recordings
fullfile(matlabbatch{1}.spm.stats.fmri_spec.dir{1}, ['spmT_0001' outExt]), ... % T-values
fullfile(P, [NameEpileptogenicity '_' spm_str_manip(D.fname,'s') '_' FileName '_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon))) '_' num2str(round(mean(Latency)))]), ... % Output file name (without the extension)
OutputType, giiCortex, SaveMNI, VolRes); % 'volume' or 'surface'
end
% ===== GROUP ANALYSIS =====
% If there are multiple files in input
if (size(DD,1) > 1)
% SPM of GI
spmDir = fullfile(P,['SPM_' NameEpileptogenicity '_Group_' FileName '_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon))) '_' num2str(round(mean(Latency)))]);
if isdir(spmDir)
cd(P);
rmdir(spmDir,'s');
end
mkdir(spmDir);
clear matlabbatch
matlabbatch{1}.spm.stats.fmri_spec.dir = {spmDir};
matlabbatch{1}.spm.stats.fmri_spec.timing.units='scans';
matlabbatch{1}.spm.stats.fmri_spec.timing.RT=TimeResolution;
matlabbatch{1}.spm.stats.fmri_spec.timing.fmri_t=16;
matlabbatch{1}.spm.stats.fmri_spec.timing.fmri_t0=1;
for i0=1:size(DD,1)
D = spm_eeg_load(deblank(DD(i0,:)));
P = spm_str_manip(deblank(DD(i0,:)),'h');
% Get seizure files
dirSeizure = fullfile(P,[FileName spm_str_manip(D.fname,'s') '_' NameEpileptogenicity '_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon))) '_' num2str(round(mean(Latency)))]);
[files,dirs] = spm_select('List', dirSeizure, outExt);
ntmp = size(files,1);
for i1 = 1:size(files,1)
matlabbatch{1}.spm.stats.fmri_spec.sess(i0).scans{i1,1} = fullfile(dirSeizure, [files(i1,:) strSelectVol]);
end
% Get baseline files
dirBaseline = fullfile(P,[FileName spm_str_manip(D.fname,'s') '_' NameEpileptogenicity 'Baseline_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon))) '_' num2str(round(mean(Latency)))]);
[files,dirs] = spm_select('List', dirBaseline, outExt);
for i1=1:size(files,1)
matlabbatch{1}.spm.stats.fmri_spec.sess(i0).scans{ntmp+i1,1} = fullfile(dirBaseline, [files(i1,:) strSelectVol]);
end
matlabbatch{1}.spm.stats.fmri_spec.sess(i0).cond = struct('name',{},'onset',{},'duration',{},'tmod',{},'pmod',{});
matlabbatch{1}.spm.stats.fmri_spec.sess(i0).multi{1} = '';
matlabbatch{1}.spm.stats.fmri_spec.sess(i0).regress.name = 'Seizure';
matlabbatch{1}.spm.stats.fmri_spec.sess(i0).regress.val = [ones(ntmp,1);zeros(size(files,1),1)];
matlabbatch{1}.spm.stats.fmri_spec.sess(i0).multireg{1} = '';
matlabbatch{1}.spm.stats.fmri_spec.sess(i0).hpf = Inf;
matlabbatch{1}.spm.stats.fmri_spec.sess(i0).fact = struct('name',{},'levels',{});
end
matlabbatch{1}.spm.stats.fmri_spec.bases.hrf.derivs = [0 0];
matlabbatch{1}.spm.stats.fmri_spec.volt = 1;
matlabbatch{1}.spm.stats.fmri_spec.global = 'None';
matlabbatch{1}.spm.stats.fmri_spec.mask = {''};
if AR
matlabbatch{1}.spm.stats.fmri_spec.cvi = 'AR(1)';
else
matlabbatch{1}.spm.stats.fmri_spec.cvi = 'none';
end
matlabbatch{2}.spm.stats.fmri_est.spmmat = {fullfile(matlabbatch{1}.spm.stats.fmri_spec.dir{1}, 'SPM.mat')};
matlabbatch{2}.spm.stats.fmri_est.method.Classical = 1;
matlabbatch{3}.spm.stats.con.spmmat = {fullfile(matlabbatch{1}.spm.stats.fmri_spec.dir{1}, 'SPM.mat')};
matlabbatch{3}.spm.stats.con.consess{1}.tcon.name = '+';
matlabbatch{3}.spm.stats.con.consess{1}.tcon.convec = ones(1,size(DD,1));
matlabbatch{3}.spm.stats.con.consess{1}.tcon.sessrep = 'none';
matlabbatch{3}.spm.stats.con.delete = 0;
spm_get_defaults('mask.thresh', 0) % No implicit masking of SPM-Ts
spm_jobman('run',matlabbatch);
% Write T-values for each electrode
WriteTvalues(deblank(DD(1,:)), ... % Reference recordings
fullfile(matlabbatch{1}.spm.stats.fmri_spec.dir{1}, ['spmT_0001' outExt]), ... % T-values
fullfile(P, [NameEpileptogenicity '_Group_' FileName '_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon))) '_' num2str(round(mean(Latency)))]), ... % Output file name (without the extension)
OutputType, giiCortex, SaveMNI, VolRes); % 'volume' or 'surface'
end
% ===== DELETE TEMP FILES =====
for i0 = 1:size(DD,1)
D = spm_eeg_load(deblank(DD(i0,:)));
P = spm_str_manip(deblank(DD(i0,:)),'h');
rmdir(fullfile(P,[FileName spm_str_manip(D.fname,'s') '_' NameEpileptogenicity '_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon))) '_' num2str(round(mean(Latency)))]),'s')
rmdir(fullfile(P,[FileName spm_str_manip(D.fname,'s') '_' NameEpileptogenicity 'Baseline_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon))) '_' num2str(round(mean(Latency)))]),'s')
end
end
%% ===== DELAY MAPS =====
% Compute map of propagation delay (only if more than one latency)
if (length(latency) > 1)
% Single recordings
for i0 = 1:size(DD,1)
D = spm_eeg_load(deblank(DD(i0,:)));
P = spm_str_manip(deblank(DD(i0,:)),'h');
% Write delay map for each file
WriteDelay(fullfile(P, ['SPM_' NameEpileptogenicity '_' FileName spm_str_manip(D.fname,'s') '_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon)))]), ... % SPM folder without the latency
latency, ThDelay, SmoothIterations, ...
fullfile(P, ['Delay_' NameEpileptogenicity '_' FileName spm_str_manip(D.fname,'s') '_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon))) '_' num2str(1000*ThDelay) outExt]), ...
OutputType, MeshFile);
end
% Write delay map for the group
if (size(DD,1) > 1)
WriteDelay(fullfile(P, ['SPM_' NameEpileptogenicity '_Group_' FileName '_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon)))]), ... % SPM folder without the latency
latency, ThDelay, SmoothIterations, ...
fullfile(P, ['Delay_' NameEpileptogenicity '_Group_' FileName '_' num2str(min(FreqBand)) '_' num2str(max(FreqBand)) '_' num2str(round(mean(Horizon))) '_' num2str(1000*ThDelay) outExt]), ...
OutputType, MeshFile);
end
end
end
%% ===================================================================================================
% ===== HELPER FUNCTIONS ============================================================================
% ===================================================================================================
%% ===== WRITE T-VALUES FOR EACH ELECTRODE =====
function WriteTvalues(RecFile, TvalueFile, OutputFile, OutputType, giiCortex, SaveMNI, VolRes)
NameEpileptogenicity = 'EI';
% Load reference recordings
D = spm_eeg_load(RecFile);
% Read output T values
switch lower(OutputType)
case 'volume'
V = spm_vol(TvalueFile);
VV = spm_read_vols(V);
% Use standard positions from SPM template
if SaveMNI
tmp = spm('Defaults','EEG');
bb = tmp.normalise.write.bb;
[x,y,z] = meshgrid(bb(1,1):VolRes:bb(2,1),...
bb(1,2):VolRes:bb(2,2),...
bb(1,3):VolRes:bb(2,3));
P = [x(:),y(:),z(:)];
% Use real coordinates from volume (considering first voxel is (1,1,1))
else
[x,y,z] = meshgrid(1:V.dim(1), 1:V.dim(2), 1:V.dim(3));
P = bsxfun(@plus, V.mat(1:3,1:3) * [x(:),y(:),z(:)]', V.mat(1:3,4))';
end
Tvalues = permute(VV,[2 1 3]);
case 'surface'
giiT = gifti(TvalueFile);
Tvalues = giiT.cdata(:,:,:);
P = giiCortex.vertices;
end
% Get sensor positions
Dsensors = sensors(D,'EEG');
try
PosElec = Dsensors.elecpos';
catch
PosElec = Dsensors.pnt';
end
BadChannels = badchannels(D);
% Average the T values in a neighborhood of 10 mm around each contact (SizeHorizon when creating images)
EIGamma = zeros(size(PosElec,2),1);
for i1 = 1:size(PosElec,2)
% Bad channels: force the value to be NaN
if ~isempty(BadChannels) && ismember(i1, BadChannels)
EIGamma(i1) = NaN;
else
dist = (P(:,1)-PosElec(1,i1)).^2+(P(:,2)-PosElec(2,i1)).^2+(P(:,3)-PosElec(3,i1)).^2;
tmp1 = Tvalues((dist < 100) & (Tvalues(:) ~= 0));
if ~isempty(tmp1)
EIGamma(i1) = mean(tmp1);
end
end
end
% Save T values as a .mat/.dat file
D1 = clone(D, [OutputFile, '.mat'], [size(PosElec,2) 1 1]);
D1(:,:,:) = EIGamma;
D1 = timeonset(D1,0);
save(D1);
% Write T values in a text file
fid = fopen([OutputFile, '.txt'], 'wt');
fprintf(fid,[' Electrode / ' NameEpileptogenicity ' \n']);
fprintf(fid,'\n');
for i1=1:length(Dsensors.label)
try
if ~isnan(EIGamma(i1))
fprintf(fid,'%s %10.2f \n', cell2mat(Dsensors.label{i1}), EIGamma(i1));
else
fprintf(fid,'%s NaN \n', cell2mat(Dsensors.label{i1}));
end
catch
if ~isnan(EIGamma(i1))
fprintf(fid,'%s %10.2f \n', cell2mat(Dsensors.label(i1)), EIGamma(i1));
else
fprintf(fid,'%s NaN \n', cell2mat(Dsensors.label(i1)));
end
end
end
fclose(fid);
end
%% ===== WRITE DELAY MAPS =====
function WriteDelay(dirStat, latency, ThDelay, SmoothIterations, OutputFile, OutputType, MeshFile)
Delay = [];
% Process all the latencies
for i2 = 1:size(latency,2)
Latency = mean(latency(:,i2));
% Load SPM.mat
dirSPM = [dirStat '_' num2str(round(mean(Latency)))];
load(fullfile(dirSPM, 'SPM.mat'));
% Calcule threshold for statistical map
df = [SPM.xCon(1).eidf, SPM.xX.erdf];
S = SPM.xVol.S; %-search Volume {voxels}
R = SPM.xVol.R; %-search Volume {resels}
% u = spm_uc_FDR(0.001,df,'T',1,P1);
% ThDelay is a p-value
if (ThDelay < 1)
u = spm_uc(ThDelay, df, 'T', R, 1, S);
% ThDelay is a t-value
else
u = ThDelay;
end
% Load spmT map
switch lower(OutputType)
case 'volume'
P1 = spm_vol(fullfile(dirSPM, 'spmT_0001.nii'));
Tvalues = spm_read_vols(P1);
case 'surface'
giiT = gifti(fullfile(dirSPM, 'spmT_0001.gii'));
Tvalues = giiT.cdata(:,:,:);
end
% Initialize delay map
if isempty(Delay)
Delay = NaN * Tvalues;
end
% Activated voxels
Q1 = find(Tvalues >= u);
% Remove if isolated peak
Q4 = find(Tvalues < u);
if (i2 > 1)
Q5 = find(Delay == mean(latency(:,i2-1)));
Q6 = intersect(Q5, Q4);
Delay(Q6) = NaN;
end
Q2 = find(isnan(Delay));
Q3 = intersect(Q2, Q1);
Delay(Q3) = mean(latency(:,i2));
end
% Save delay maps
switch lower(OutputType)
case 'volume'
% Write delay map
P0 = P1;
P0.fname = OutputFile;
P0 = spm_write_vol(P0,Delay);
% Smooth delay map
clear matlabbatch
matlabbatch{1}.spm.spatial.smooth.data = {[P0.fname ',1']};
matlabbatch{1}.spm.spatial.smooth.fwhm = [5 5 5];
matlabbatch{1}.spm.spatial.smooth.dtype = 0;
matlabbatch{1}.spm.spatial.smooth.im = 1;
matlabbatch{1}.spm.spatial.smooth.prefix = 's';
% spm('defaults', 'EEG');
spm_jobman('run', matlabbatch);
% Remove all the voxels for which there is no value
Q = strrep(OutputFile, 'Delay_', 'sDelay_');
M = spm_vol(Q);
I = spm_read_vols(M);
I(isnan(Delay)) = NaN;
I = (max(Delay(:))./max(I(:))) * I;
spm_write_vol(M,I);
case 'surface'
% Replace NaN values with 0 before smoothing
iNan = isnan(Delay);
Delay(Delay==0) = eps('single');
Delay(iNan) = 0;
% Write delay map
out_spm_gii(MeshFile, OutputFile, Delay);
% % Smooth delay map
% sDelay = spm_mesh_smooth(gifti(MeshFile), Delay, SmoothIterations);
% % Set non-defined values to 0
% sDelay(iNan) = 0;
% % Write smoothed map
% out_spm_gii(MeshFile, strrep(OutputFile, 'Delay_', 'sDelay_'), sDelay);
end
end